Create with Code

Unit 4 Lesson Plans

© Unity 2021 Create with Code - Unit 4

& unity

4.7 watch Where You're Going

Steps:

Step 1: Create project and open scene

Example of project by end of lesson

Step 2: Set up the player and add a texture

Step 3: Create a focal point for the camera

Step 4: Rotate the focal point by user input
Step 5: Add forward force to the player

Step 6: Move in direction of focal point

Length:

Overview:

Project
Outcome:

Learning
Objectives:

© Unity 2021

60 minutes

First thing's first, we will create a new prototype and download the starter
files! You'll notice a beautiful island, sky, and particle effect... all of which can
be customized! Next you will allow the player to rotate the camera around the
island in a perfect radius, providing a glorious view of the scene. The player
will be represented by a sphere, wrapped in a detailed texture of your choice.
Finally you will add force to the player, allowing them to move forwards or
backwards in the direction of the camera.

The camera will evenly rotate around a focal point in the center of the island,
provided a horizontal input from the player. The player will control a textured
sphere, and move them forwards or backwards in the direction of the
camera'’s focal point.

By the end of this lesson, you will be able to:

- Apply Texture wraps to objects

- Attach a camera to its focal point using parent-child relationships
- Transform objects based on local XYZ values

Create with Code - Unit 4

https://docs.google.com/document/d/1O3XwIy4lMnZAGojD0FrXXSJw1DOlAfO1zMmINTggsF0/edit#heading=h.9xw2rvio6erz
https://docs.google.com/document/d/1O3XwIy4lMnZAGojD0FrXXSJw1DOlAfO1zMmINTggsF0/edit#heading=h.jpvf7062snkj

Step 1: Create project and open scene

You've done it before, and it’s time to do it again... we must start a new project and import the
starter files.

1. Open Unity Hub and create an empty “Prototype 4 - Don't worry: You can change texture of
project in your course directory on the correct floating island and the color of the sky
Unity version. later

If you forget how to do this, refer to the i !)ont worry: Were in L
isometric/orthographic view for a

instructions in Lesson 1.1 -Step 1 . reason: It just looks nicer when we
2. Click to download the Prototype 4 Starter Files, rotate around the island

extract the compressed folder, and then import the
.unitypackage into your project.
If you forget how to do this, refer to the
instructions in Lesson 1.1 - Step 2

3. Open the Prototype 4 scene and delete the Sample
Scene without saving

4. Click Run to see the particle effects

20 || % |40 | @ -

€ Game | =
L .

© Unity 2021 Create with Code - Unit 4

https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cb7a1acedbc2a10b7261d15
https://connect-prd-cdn.unity.com/20210507/c8291200-b024-4de8-8c86-2bfd0f323be3/Prototype%204%20-%20Starter%20Files.zip?_ga=2.33909089.1186801097.1620052249-59568313.1601905412
https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cca0230edbc2a635ca5d6d2

Step 2: Set up the player and add a texture

We've got an island for the game to take place on, and now we need a sphere for the player to
control and roll around.

1. Inthe Hierarchy, create 3D Object > Sphere - New Concept:

2. Rename it “Player”, reset its position and increase its XYZ scale Texture wraps
10 1.5

3. Add a RigidBody component to the Player

4. From the Library > Textures, drag a texture onto the sphere

L=l
H
3

s

)
o

0ipee
Hlala
‘olels

Step 3: Create a focal point for the camera

If we want the camera to rotate around the game in a smooth and cinematic fashion, we need
to pin it to the center of the island with a focal point.

1. Create a new Empty Object and rename it “Focal Point”, - Don’t worry: This whole “focal

2. Reset its position to the origin (0, 0, 0), and make the point” business may be
Camera a child object of it confusing at first, but it will make

UG vt bl " ” sense once you see it in action
.Cr n r folder,and an R mer . . .
3. Create a new “Scripts” folder, and a new “RotateCamera - Tip: Try rotating the Focal point

scriptinside it o . around the Y axis and see the
4. Attach the “RotateCamera” script to the Focal Point camera rotate in scene view
= Hierarchy i'E‘.‘ © Inspector | &=
vcg::r;té;;:)”e - | & [FocalPoirt (] Static =
_IDirectional Light ‘ Tag | untagged : | Layer | Default 3
] F[:}_Mist » ¥ _o Transform @ 3e
» by SkyDome »| Position X0 Y 0 Z|0
Iy Island * || Rotation X0 Y 0 Z|0

JLlave | Scale X|1 1 e 1
® Focal Point]
T G ¥ .« |¥/Rotate Camera (Script) "X |
‘ Script RotateCamera 0

[Add Component |

© Unity 2021 Create with Code - Unit 4

Step 4: Rotate the focal point by user input

Now that the camera is attached to the focal point, the player must be able to rotate it - and the
camera child object - around the island with horizontal input.

1. Create the code to rotate the camera based on - Tip: Horizontal input should be
rotationSpeed and horizontallnput familiar, we used it all the way back in

2. Tweak the rotation speed value to get the speed Unit 1! Feel free to reference your old
you want code for guidance.

public float rotationSpeed;

void Update()

{
float horizontalInput = Input.GetAxis("Horizontal");

transform.Rotate(Vector3.up, horizontalInput * rotationSpeed * Time.deltaTime);

}

Step 5: Add forward force to the player

The camera is rotating perfectly around the island, but now we need to move the player.

1. Create a new “PlayerController” script, apply it to the - Tip: Moving objects with
Player, and open it RigidBody and Addforce should

be familiar, we did it back in Unit

2. Declare a new public float speed variable and initialize it
3! Feel free to reference old code.

3. Declare a new private Rigidbody playerRb and initialize - Don't worry: We don't have
itin Start() control over its direction yet -
4. In Update(), declare a new forwardInput variable based we'll get to that next
on “Vertical” input
5. Call the AddForce() method to move the player forward
based forwardinput

private Rigidbody playerRb;
public float speed = 5.0f;

void Start() {
playerRb = GetComponent<Rigidbody>(); }

void Update() {

float forwardInput = Input.GetAxis("Vertical");
playerRb.AddForce(Vector3.forward * speed * forwardInput); }

© Unity 2021 Create with Code - Unit 4

Step 6: Move in direction of focal point

We've got the ball rolling, but it only goes forwards and backwards in a single direction! It
should instead move in the direction the camera (and focal point) are facing.

1. Declare a new private GameObject focalPoint; and - New Concept: Global vs Local XYZ
initialize it in Start(): focalPoint = - Tip: Global XYZ directions relate to the
GameObiect Find("Focal Point"): entire scene, whereas local XYZ

directions relate to the object in

2. In the AddForce call, Replace Vector3.forward with .
question

focalPoint.transform.forward

private GameObject focalPoint;

void Start() {
playerRb = GetComponent<Rigidbody>();
focalPoint = GameObject.Find("Focal Point"); }

void Update() {
float forwardInput = Input.GetAxis("Vertical");
playerRb.AddForce (VYeeter3—ferward focalPoint.transform.forward
* speed * forwardInput); }

Lesson Recap

New e Camera rotates around the island based on horizontal input
Functionality Player rolls in direction of camera based on vertical input

New Concepts
and Skills

Texture Wraps

Camera as child object
Global vs Local coordinates
Get direction of other object

In the next lesson, we'll add more challenge to the player, by creating
enemies that chase them in the game.

Next Lesson

© Unity 2021 Create with Code - Unit 4

& unity

4.2 Follow the Player

Steps:

Example of project by end of lesson
Step 1: Add an enemy and a physics material : .

Step 2: Create enemy script to follow player

Step 3: Create a lookDirection variable

Step 4: Create a Spawn Manager for the enemy

Step 5: Randomly generate spawn position

Step 6: Make a method return a spawn point

Length: 60 minutes

Overview: The player can roll around to its heart’s content... but it has no purpose. In
this lesson, we fill that purpose by creating an enemy to challenge the player!
First we will give the enemy a texture of your choice, then give it the ability to
bounce the player away... potentially knocking them off the cliff. Lastly, we
will let the enemy chase the player around the island and spawn in random

positions.
Project A textured and spherical enemy will spawn on the island at start, in a random
Outcome: location determined by a custom function. It will chase the player around the

island, bouncing them off the edge if they get too close.

Learning By the end of this lesson, you will be able to:
Objectives: - Apply Physics Materials to make game objects bouncy
- Normalize vectors to point the enemy in the direction of the player
- Randomly spawn with Random.Range on two axes
- Write more advanced custom functions and variables to make your code
clean and professional

© Unity 2021 Create with Code - Unit 4

Step 1: Add an enemy and a physics material

Our camera rotation and player movement are working like a charm. Next we're going to set up
an enemy and give them them some special new physics to bounce the player away!

1. Create a new Sphere, rename it “Enemy” reposition
it, and drag a texture onto it

2. Add a new RigidBody component and adjust its
XYZ scale, then test

3. In a new “Physics Materials” folder, Create >

- Don't worry: If your game is lagging,
uncheck the “Active” checkbox for your
clouds

- New Concept: Physics Materials

- New Concept: Bounciness property
and Bounce Combine

Physics Material, then name it “Bouncy”

4. Increase the Bounciness to “1”, change Bounce
Combine to “Multiply”, apply it to your player and
enemy, then test

= Hierarchy

s = | © Inspector a-=

Create ~ Al
v € Prototype 4*
Directional Light
I FX_Mist
» by SkyDome
Iy Island
Player
- Focal Point
Enemy

[Project

& Bouncy

VR

— Open

Dynamic Friction
Static Friction

0.6 I
0.6
Bounciness 1
Friction Combine
Bounce Combine

| Average

|_Multiply

=

Create *
v ' Favorites
All Materials
' All Models
All Prefabs

© Unity 2021

4.5
Assets » Materials

Create with Code - Unit 4

Step 2: Create enemy script to follow player

The enemy has the power to bounce the player away, but only if the player approaches it. We
must tell the enemy to follow the player’s position, chasing them around the island.

1. Make a new “Enemy” script and attach it to the - Tip: Imagine we're generating this new
Enemy vector by drawing an arrow from the
enemy to the player.
- Tip: We should start thinking ahead
and writing our variables in advance.
Think... what are you going to need?

2. Declare 3 new variables for Rigidbody enemyRb;,
GameObject player;, and public float speed;
3. Initialize enemyRb = GetComponent Rigidbody>();

and player = GameObject.Find("Player"); - Tip: When normalized, a vector keeps
4. In Update(), AddForce towards in the direction the same direction but its length is 1.0,
between the Player and the Enemy forcing the enemy to try and keep up

public float speed = 3.0f;
private Rigidbody enemyRb;
private GameObject player;

void Update() {
enemyRb.AddForce((player.transform.position
- transform.position).normalized * speed); }

Step 3: Create a lookDirection variable

The enemy is now rolling towards the player, but our code is a bit messy. Let’s clean up by
adding a variable for the new vector.

1. In Update(), declare a new Vector3 lookDirection variable - Tip: As always, adding
2. Set Vector3 lookDirection = (player.transform.position - variables makes the code more

transform.position).normalized; readable
3. Implement the lookDirection variable in the AddForce call

void Update() {
Vector3 lookDirection = (player.transform.position
- transform.position).normalized;

enemyRb.AddForce(lookDirection {player—transferm—position
—transformposition)—hormatized * speed); }

© Unity 2021 Create with Code - Unit 4

Step 4: Create a Spawn Manager for the enemy

Now that the enemy is acting exactly how we want, we're going to turn it into a prefab so it can

be instantiated by a Spawn Manager.

1. Drag Enemy into the Prefabs folder to create a new Prefab,
then delete Enemy from scene

2. Create a new “Spawn Manager” object, attach a new
“SpawnManager” script, and open it

3. Declare a new public GameObject enemyPrefab variable then
assign the prefab in the inspector

4. In Start(), instantiate a new enemyPrefab at a predetermined
location

public GameObject enemyPrefab;

void Start()

{
Instantiate(enemyPrefab, new Vector3(e, 0, 6),

enemyPrefab.transform.rotation); }

Step 5: Randomly generate spawn position

The enemy spawns at start, but it always appears in the same spot. Using the familiar Random

class, we can spawn the enemy in a random position.

1. In SpawnManager.cs, in Start(), create new randomly - Tip: Remember, we used
generated X and Z Random.Range all the way back
in Unit 2! Feel free to reference

2. Create a new Vector3 randomPos variable with those
random X and Z positions

3. Incorporate the new randomPos variable into the
Instantiate call

4. Replace the hard-coded values with a spawnRange
variable

5. Start and Restart your project to make sure it's working

old code.

public GameObject enemyPrefab;
private float spawnRange = 9;

void Start() {
float spawnPosX = Random.Range(—9+—9—-spawnRange, spawnRange);
float spawnPosZ = Random.Range(—S5—9—-spawnRange, spawnRange);
Vector3 randomPos = new Vector3(spawnPosX, @, spawnPosZ);
Instantiate(enemyPrefab, randomPos, enemyPrefab.transform.rotation); }

© Unity 2021 Create with Code - Unit 4

11
Step 6: Make a method return a spawn point

The code we use to generate a random spawn position is perfect, and we're going to be using it
a lot. If we want to clean the script and use this code later down the road, we should store itin a
custom function.

1. Create a new function Vector3 - Tip: This function will come in handy
GenerateSpawnPosition() { } later, once we randomize a spawn

2. Copy and Paste the spawnPosX and spawnPosZ position for the powerup
variables into the new method - New Concept: Functions that return a

: . value
3. Add the line to return randomPos; in your new - Tip: This function is different from
method “void” calls, which do not return a
4. Replace the code in your Instantiate call with your value. Look at “GetAxis” in
new function name: GenerateSpawnPosition() PlayerController for example - it returns
a float

void Start() {
Instantiate(enemyPrefab, GenerateSpawnPosition()

rew—Yector3{spawnPosX—05—spawnPosZ), enemyPrefab.transform.rotation);

J
..... D Nnoo =
. cl Pow

private Vector3 GenerateSpawnPosition () {
float spawnPosX = Random.Range(-spawnRange, spawnRange);
float spawnPosZ = Random.Range(-spawnRange, spawnRange);
Vector3 randomPos = new Vector3(spawnPosX, @, spawnPosZ);
return randomPos; }

Lesson Recap

New e Enemy spawns at random location on the island
Functionality Enemy follows the player around
Spheres bounce off of each other

New Concepts e Physics Materials
and Skills e Defining vectors in 3D space
e Normalizing values
e Methods with return values
Next Lesson e In our next lesson, we'll create ways to fight back against these enemies

using Powerups!

© Unity 2021 Create with Code - Unit 4

12

& unity

4.3 PowerUp and CountDown

Steps:

Example of project by end of lesson
Step 1: Choose and prepare a powerup

Step 2: Destroy powerup on collision

Step 3: Test for collision with a poweru

Step 4: Apply extra knockback with powerup

Step 5: Create Countdown Routine for powerup

Step 6: Add a powerup indicator

Length: 60 minutes

Overview: The enemy chases the player around the island, but the player needs a better
way to defend themselves... especially if we add more enemies. In this
lesson, we're going to create a powerup that gives the player a temporary
strength boost, shoving away enemies that come into contact! The powerup
will spawn in a random position on the island, and highlight the player with
an indicator when it is picked up. The powerup indicator and the powerup
itself will be represented by stylish game assets of your choice.

Project A powerup will spawn in a random position on the map. Once the player

Outcome: collides with this powerup, the powerup will disappear and the player will be
highlighted by an indicator. The powerup will last for a certain number of
seconds after pickup, granting the player super strength that blasts away

enemies.
Learning By the end of this lesson, you will be able to:
Objectives: - Write informative debug messages with Concatenation and variables

- Repeat functions with the power of IEnumerator and Coroutines
- Use SetActive to make game objects appear and disappear from the scene

© Unity 2021 Create with Code - Unit 4

13

Step 1: Choose and prepare a powerup

In order to add a completely new gameplay mechanic to this project, we will introduce a new
powerup object that will give the player temporary superpowers.

1. From the Library, drag a Powerup object into the scene, - Warning: Remember, you still
rename it “Powerup” and edit its scale & position have to apply the tag after it
2. Add a Box Collider to the powerup, click Edit Collider to has been created.

make sure it fits, then check the “Is Trigger” checkbox
. Create a new “Powerup” tag and apply it to the powerup
4. Drag the Powerup into the Prefabs folder to create a new
“Original Prefab”

(08)

= Hierarchy ® = | © Inspector &=
Erastagl (T2 ¥ 'Powerup Static v

A %

v € Prototype 4* =
Directional Light Tag | untagged ¢) Liyer | Default
I FX_Mist Plefab | Untagged Overrides
» iy SkyDome vAd Tr Respawn [vIEES
i Island Pdsitior Finish 'yo zo
Player Rd¢tatio EditorOnly 'yo ~ zo
» |_IFocal Point Hys—
Sdale Y|2 2
Spawn Manager ‘7 MainCamera
L s b) EL
Mg¢sh GameController Lpem_01 e
L 1740 Pow(up @ =
M T Add Tag... @
e llider

Te Trinnar

Step 2: Destroy powerup on collision

As a first step to getting the powerup working, we'll make it disappear when the player hits it
and set up a new boolean variable to track that the player got it.

1. In PlayerController.cs, add a new OnTriggerEnter() - Don’t worry: If this doesn’t work, make
method sure that the Powerup’s collider “Is
trigger” and player’s collider is NOT
- Tip: Make sure hasPowerup = true in
the inspector when you collide

2. Add an if-statement that destroys
other.CompareTag("Powerup") powerup on
collision

3. Create a new public bool hasPowerup; and set
hasPowerup = true; when you collide with the
Powerup

public bool hasPowerup

private void OnTriggerEnter(Collider other) {
if (other.CompareTag("Powerup™)) {
hasPowerup = true;
Destroy(other.gameObject); } }

© Unity 2021 Create with Code - Unit 4

Step 3: Test for enemy and powerup

The powerup will only come into play in a very particular circumstance: when the player has a
powerup AND they collide with an enemy - so we'll first test for that very specific condition.

1. Create a new “Enemy” tag and apply it to the - Tip: OnTriggerEnter is good for stuff
Enemy Prefab like picking up powerups, but you
2. In PlayerController.cs, add the OnCollisionEnter() should use OnCollisionEnter when you
¢ . want something to do with physics
unction e
. . . - New Concept: Concatenation in Debug
3. Create the if-statement with the double-condition messages
testing for enemy tag and hasPowerup boolean - Tip: When you concatenate a variable
4. Create a Debug.Log to make sure it's working in a debug message, it will returns its

VALUE not its name

private void OnCollisionEnter(Collision collision) {
if (collision.gameObject.CompareTag("Enemy") && hasPowerup) {
Debug.Log("Collided with " + collision.gameObject.name

+ " with powerup set to " + hasPowerup);

Step 4: Apply extra knockback with powerup

With the condition for the powerup set up perfectly, we are now ready to program the actual
powerup ability: when the player collides with an enemy, the enemy should go flying!

1. In OnCollisionEnter() declare a new local variable - Tip: Reference the code in Enemy.cs
to get the Enemy’s Rigidbody component that makes the enemy follow the
2. Declare a new variable to get the direction away player. In a way, we're reversing that

code in order to push the enemy away.
- Don't worry: No need to use
.Normalize, since they're colliding

from the player
3. Add an impulse force to the enemy, using a new
powerupStrength variable

private float powerupStrength = 15.0f;

private void OnCollisionEnter(Collision collision) {
if (collision.gameObject.CompareTag("Enemy") && hasPowerup) {

collision.gameObject.GetComponent<Rigidbody>();

Rigidbody enemyRigidbody =
= (collision.gameObject.transform.position

Vector3 awayFromPlayer
- transform.position);

Debug.Log("Player collided with " + collision.gameObject
+ " with powerup set to + hasPowerup);
enemyRigidbody.AddForce(awayFromPlayer * powerupStrength,

ForceMode.Impulse); } }

14

© Unity 2021 Create with Code - Unit 4

15
Step 5: Create Countdown Routine for powerup

It wouldn't be fair to the enemies if the powerup lasted forever - so we'll program a countdown
timer that starts when the player collects the powerup, removing the powerup ability when the
timer is finished.

1. Add a new IEnumerator - New Concept: IEnumerator
PowerupCountdownRoutine () {} - New Concept: Coroutines
2. Inside the PowerupCountdownRoutine, wait 7 - Tip: WaitForSeconds()

seconds, then disable the powerup
3. When player collides with powerup, start the
coroutine

private void OnTriggerEnter(Collider other) {
if (other.CompareTag("Powerup™)) {
hasPowerup = true;
Destroy(other.gameObject);
StartCoroutine(PowerupCountdownRoutine()); } }

IEnumerator PowerupCountdownRoutine() {
yield return new WaitForSeconds(7); hasPowerup = false; }

© Unity 2021 Create with Code - Unit 4

Step 6: Add a powerup indicator

To make this game a lot more playable, it should be clear when the player does or does not
have the powerup, so we'll program a visual indicator to display this to the user.

1.

. Uncheck the “Active” checkbox in the inspector
. In PlayerController.cs, declare a new public GameObject

From the Library, drag a Powerup object into the scene, rename it - New Function:

“Powerup Indicator”, and edit its scale SetActive

- Tip: Make sure the
indicator is turning on
and off before making
it follow the player

powerupindicator variable, then assign the Powerup Indicator
variable in the inspector

. When the player collides with the powerup, set the indicator object

to Active, then set to Inactive when the powerup expires

. In Update(), set the Indicator position to the player’s position + an

offset value

public GameObject powerupIndicator

void Update() {

. powerupIndicator.transform.position = transform.position
+ new Vector3(e, -0.5f, 9); }

private void OnTriggerEnter(Collider other) {

if (other.CompareTag("Powerup™)) {
. powerupIndicator.gameObject.SetActive(true); } }

IEnumerator PowerupCountdownRoutine() {

. powerupIndicator.gameObject.SetActive(false); }

Lesson Recap

New e When the player collects a powerup, a visual indicator appears

Functionality

When the player collides with an enemy while they have the powerup, the
enemy goes flying

16

e After a certain amount of time, the powerup ability and indicator disappear

New Concepts e Debug concatenation
and Skills e Local component variables
e |Enumerators and WaitForSeconds()
e (oroutines
e SetActive(true/false)
Next Lesson e We'll start generating waves of enemies for our player to fend off!

© Unity 2021

Create with Code - Unit 4

17

& unity

4.4 For-Loops For Waves

Steps: Example of project by end of lesson

Step 1: Write a for-loop to spawn 3 enemies

Step 2: Give the for-loop a parameter

Step 3: Destroy enemies if they fall off

Step 4: Increase enemyCount with waves

Step 5: Spawn Powerups with new waves

Length: 60 minutes

Overview: We have all the makings of a great game; A player that rolls around and
rotates the camera, a powerup that grants super strength, and an enemy that
chases the player until the bitter end. In this lesson we will wrap things up by
putting these pieces together!

First we will enhance the enemy spawn manager, allowing it to spawn
multiple enemies and increase their number every time a wave is defeated.
Lastly we will spawn the powerup with every wave, giving the player a chance
to fight back against the ever-increasing horde of enemies.

Project The Spawn Manager will operate in waves, spawning multiple enemies and a
Outcome: new powerup with each iteration. Every time the enemies drop to zero, a new
wave is spawned and the enemy count increases.

Learning By the end of this lesson, you will be able to:

Objectives: - Repeat functions with For-loops
- Increment integer values in a loop with the ++ operator
- Target objects in a scene with FindObjectsOfType
- Return the length of an array as an integer with .Length

© Unity 2021 Create with Code - Unit 4

18

Step 1: Write a for-loop to spawn 3 enemies
We should challenge the player by spawning more than one enemy. In order to do so, we will
repeat enemy instantiation with a loop.

1. In SpawnManager.cs, in Start(), replace single - New Concept: For-loops

Instantiation with a for-loop that spawns 3 - Don’t worry: Loops are a bit confusing
at first, but they make sense

enemies
2 Move the for-loob to a new void eventually. Loops are powerful tools
' P f . h Il th that programmers use often
SpawnEnemyWave() function, then call that - New Concept: ++ Increment Operator

function from Start()

void Start() {
SpawnEnemyWave() ;

I | l- | E, P’Fl,s l S F olo Ei,
enremyPrefab-transferm—rotatiens—t }

void SpawnEnemyWave() {
for (int 1 = 9; i < 3; i++) {
Instantiate(enemyPrefab, GenerateSpawnPosition(),
enemyPrefab.transform.rotation); } }

Step 2: Give the for-loop a parameter

Right now, SpawnEnemyWave spawns exactly 3 enemies, but if we're going to dynamically
increase the number of enemies that spawn during gameplay, we need to be able to pass
information to that method.

1. Add a parameter int enemiesToSpawn to the - New Concept: Custom methods with
SpawnEnemyWave function pz.arameters -
2. Replace i < __ with i < enemiesToSpawn - Tip: GenerateSpawnPosition returns a

3. Add this new variable to the function call in Start(): value, SpawnEnemyWave does not.
SpawnEnemyWave takes a parameter,

SpawnEnemyWave(__); GenerateSpawnPosition does not.

void Start() {
SpawnEnemyWave(3); }

void SpawnEnemyWave(int enemiesToSpawn) {
for (int 1 = @; i < 3 enemiesToSpawn; i++) {
Instantiate(enemyPrefab, GenerateSpawnPosition(),
enemyPrefab.transform.rotation); } }

© Unity 2021 Create with Code - Unit 4

19
Step 3: Destroy enemies if they fall off

Once the player gets rid of all the enemies, they're left feeling a bit lonely. We need to destroy
enemies that fall, and spawn a new enemy wave once the last one is vanquished!
1. In Enemy.cs, destroy the enemies if their position - New Function: FindObjectsOfType
is less than a -Y value
2. In SpawnManager.cs, declare a new public int
enemyCount variable
3. In Update(), set enemyCount =
FindObjectsOfType<Enemy>().Length;
4. Write the if-statement that if enemyCount == 0
then SpawnEnemyWave

void Update() {
. if (transform.position.y < -10) { Destroy(gameObject); } }

public int enemyCount

void Update() {
enemyCount = FindObjectsOfType<Enemy>().Length;
if (enemyCount == @) { SpawnEnemyWave(l); } }

Step 4: Increase enemyCount with waves
Now that we control the amount of enemies that spawn, we should increase their number in
waves. Every time the player defeats a wave of enemies, more should rise to take their place.

1. Declare a new public int waveNumber = 1;, then - Tip: Incrementing with the ++ operator
implement it in SpawnEnemyWave(waveNumber); is very handy, you may find yourself

2. In the if-statement that tests if there are 0 enemies ~ USing itin the future
left, increment waveNumber by 1

public int waveNumber = 1;

void Start() {
SpawnEnemyWave (3 waveNumber); }

void Update() {

enemyCount = FindObjectsOfType<Enemy>().Length;
if (enemyCount == @) { waveNumber++; SpawnEnemyWave(%* waveNumber); } }

© Unity 2021 Create with Code - Unit 4

20
Step 5: Spawn Powerups with new waves

Our game is almost complete, but we're missing something. Enemies continue to spawn with
every wave, but the powerup gets used once and disappears forever, leaving the player
vulnerable. We need to spawn the powerup in a random position with every wave, so the player
has a chance to fight back.

1. In SpawnManager.cs, declare a new public - Tip: Now that we have a very playable
GameObject powerupPrefab variable, assign the game, let’s test and tweak values
prefab in the inspector and delete it from the
scene

2. In Start(), Instantiate a new Powerup
3. Before the SpawnEnemyWave() call, Instantiate a
new Powerup

public GameObject powerupPrefab;

void Start() {
. Instantiate(powerupPrefab, GenerateSpawnPosition(),
powerupPrefab.transform.rotation); }

void Update() {
. if (enemyCount == @) { ... Instantiate(powerupPrefab,
GenerateSpawnPosition(), powerupPrefab.transform.rotation); } }

Lesson Recap

New e Enemies spawn in waves
Functionality The number of enemies spawned increases after every wave is defeated
A new power up spawns with every wave

New Concepts e For-loops

and Skills e Increment (++) operator
e Custom methods with parameters
e FindObjectsOfType

© Unity 2021 Create with Code - Unit 4

21

& unity

Challenge 4

Soccer Scripting

Challenge Use the skills you learned in the Sumo Battle prototype in a completely

Overview: different context: the soccer field. Just like in the prototype, you will control a
ball by rotating the camera around it and applying a forward force, but instead
of knocking them off the edge, your goal is to knock them into the opposing
net while they try to get into your net. Just like in the Sumo Battle, after every
round a new wave will spawn with more enemy balls, putting your defense to
the test. However, almost nothing in this project is functioning! It's your job to
get it working correctly.

Challenge - Enemies move towards your net, but you can hit them to deflect them away
Outcome: - Powerups apply a temporary strength boost, then disappear after 5 seconds
- When there are no more enemy balls, a new wave spawns with 1 more
enemy
Challenge In this challenge, you will reinforce the following skills/concepts:
Objectives: - Defining Vectors by subtracting one location in 3D space from another
- Track the number of objects of a certain type in a scene to trigger certain
events

- Using Coroutines to perform actions based on a timed interval

- Using for-loops and dynamic variables to run code a particular number of
times

- Resolving errors related to null references of unassigned variables

Challenge - Open your Prototype 4 project
Instructions: - Download the "Challenge 4 Starter Files" from the Tutorial Materials section,
then double-click on it to Import
- In the Project Window > Assets > Challenge 4 > Instructions folder, use the
resources as a guide to complete this challenge

© Unity 2021 Create with Code - Unit 4

Challenge

Hitting an enemy
sends it back towards
you

A new wave spawns
when the player gets a
powerup

The powerup never
goes away

2 enemies are
spawned in every
wave

The enemy balls are
not moving anywhere

Bonus Challenge

The player needs a
turbo boost

The enemies never get
more difficult

© Unity 2021

Task

When you hit an enemy, it
should send it away from the
player

A new wave should spawn
when all enemy balls have
been removed

The powerup should only last
for a certain duration, then
disappear

One enemy should be
spawned in wave 1, two in
wave 2, three in wave 3, etc

The enemy balls should go
towards the “Player Goal”
object

Task

The player should get a
speed boost whenever the
player presses spacebar -
and a particle effect should
appear when they use it

The enemies’ speed should
increase in speed by a small
amount with every new wave

22

Hint

In PlayerControllerX.cs, to get a
Vector away from the player, you
should subtract the [enemy position]
minus the [player’s position] - not the
reverse

In SpawnManagerX.cs, check that the
enemyCount variable is being set
correctly

In PlayerControllerX.cs, the
PowerupCoolDown Coroutine code
looks good, but this coroutine is
never actually called with the
StartCoroutine() method

In SpawnManagerX.cs, the for-loop
that spawns enemy should make use
of the enemiesToSpawn parameter

There is an error in EnemyX.cs:
“NullReferenceException: Object
reference not set to an instance of an
object”. It looks like the playerGoal
object is never assigned.

Hint

In PlayerController, add a simple
if-statement that adds an “impulse”
force if spacebar is pressed. To add a
particle effect, first attach it as a child
object of the Focal Point.

You'll need to track and increase the
enemy speed in SpawnManagerX.cs.
Then in EnemyX.cs, reference that
speed variable and set it in Start().

Create with Code - Unit 4

23

Challenge Solution

In PlayerControllerX.cs, in OnCollisionEnter(), the awayFromPlayer Vector3 is in the opposite
direction it should be.

Vector3 awayFromPlayer = transform.position -
other.gameObject. transform.position;

= other.gameObject. transform.position -
transform.position;

In SpawnManagerX.cs, the enemyCount variable is counting the number of objects with a
“Powerup” tag - it should be counting the number of objects with an “Enemy” tag

void Update() {
enemyCount = GameObject.FindGameObjectsWithTag("Pewertp Enemy").Length;

}

In PlayerControllerX.cs, in the OnTriggerEnter() method, you need to initiate the
PowerupCooldown Coroutine in order to begin the countdown process

private void OnTriggerEnter(Collider other) {
if (other.gameObject.CompareTag("Powerup™)) {

StartCoroutine(PowerupCooldown());

}
}

In SpawnManagerX.cs, the for-loop that spawns enemy should make use of the
enemiesToSpawn parameter

for (int i = @; i < 2—enemiesToSpawn; i++) {
Instantiate(enemyPrefab, GenerateSpawnPosition(),

}

In EnemyX.cs, the playerGoal variable is not initialized - initialize it in the Start() method

void Start() {
enemyRb = GetComponent<Rigidbody>();
playerGoal = GameObject.Find("Player Goal");

}

© Unity 2021 Create with Code - Unit 4

24

Bonus Challenge Solution

X1

X2

X3

Y1

To add a turbo boost, In PlayerControllerX.cs, declare a new turboBoost float variable, then in
Update(), add a simple if-statement that adds an “impulse” force in the direction of the focal
point if spacebar is pressed:

private float turboBoost = 10;
void Update() {

if (Input.GetKeyDown(KeyCode.Space)) {
playerRb.AddForce(focalPoint.transform.forward * turboBoost, ForceMode.Impulse);

}
}

Add the Smoke_Particle prefab as a child object of the focal point (next to the camera), then in
PlayerControllerX.cs, declare a new turboSmoke particle variable and assign it in the inspector

e e s —
T |) - (d svesh Renderer T

¥ | Focal Point

| Main . > (&) |/ sphere Collider Q@ & %
I Smoke_Particle » || ® 5 Rigidbody - 8
| |Spawn Manager ¥ = [+ Player Controller X (Script) & 5 #*

Powerup Indicator Script PlayerControllerX o]

L./ Ground Has Powerup -
b L) Walls Powerup Indicator I Powerup Indicator o]
¥ Goals Power Up Duration 5
.. Player Goal Turbo Smoke % Smoke_Particle (Particle System) ol
I Enemy Goal

In PlayerControllerX.cs, in the if-statement checking if the player presses spacebar, play the
particle

if (Input.GetKeyDown(KeyCode.Space)) {
playerRb.AddForce(focalPoint.transform.forward * turboBoost, ForceMode.Impulse);
turboSmoke.Play();

}

In SpawnManagerX.cs, declare and initialize a new public enemySpeed variable, then increase
it by a certain amount every time a wave is spawned:

public int enemyCount;
public float enemySpeed = 50;

void SpawnEnemyWave(int enemiesToSpawn) {

waveCount++;
enemyCount += 25;

}

© Unity 2021 Create with Code - Unit 4

25

Y2 In EnemyX.cs, declare a new spawnManagerXScript variable, get a reference to it in Start(),
then set the enemy’s speed variable to your new enemySpeed variable

private GameObject playerGoal;
private SpawnManagerX spawnManagerXScript;

void Start() {
enemyRb = GetComponent<Rigidbody>();
playerGoal = GameObject.Find("Player Goal");
spawnManagerXScript = GameObject.Find("Spawn Manager").GetComponent<SpawnManagerX>();
speed = spawnManagerXScript.enemySpeed;

Y3 To test, make the speed variable in EnemyX.cs public and check the enemies’ speed when they
are spawned in different waves

© Unity 2021 Create with Code - Unit 4

26

& unity
Unit 4 Lab

Basic Gameplay

Steps: Example of progress by end of lab

Step 1: Give objects basic movement ot [se s <l it n Py | e g [t G

Step 2: Destroy objects off-screen ‘ “

Step 3: Handle object collisions ‘

Step 4: Make objects into prefabs .
H
Step 5: Make SpawnManager spawn Prefabs s ® ‘

Length: 60 minutes

Overview: In this lab, you will work with all of your non-player objects in order to bring
your project to life with its basic gameplay. You will give your projectiles,
pickups, or enemies their basic movement and collision detection, make
them into prefabs, and have them spawned randomly by a spawn manager.
By the end of this lab, you should have a glimpse into the core functionality
of your game.

Project Non-player objects are spawned at appropriate locations in the scene with
Outcome: basic movement. When objects collide with each other, they react as
intended, by either bouncing or being destroyed.

Learning By the end of this lab, you will be able to:
Objectives: - More comfortably program basic movement
- More comfortably handle object collisions
- More comfortably spawn object prefabs on timed intervals

© Unity 2021 Create with Code - Unit 4

27
Step 1: Give objects basic movement
Before you spawn objects into your scene, they should move the way you want.

1. If relevant, add Rigidbody components to your - Tip: Make sure you uncheck “use
non-player objects gravity” if you don’t want them to fall
2. Create a new script(s) for the objects that will be - Tip: In the collider component, check
instantiated during gameplay and attach them to “is trigger” if you don’t want actual
their respective objects (including projectiles or collisions
pickups)
3. Program the basic movement for your objects and
test that they work

By the end of this step, all objects should basically move the way they should in the game.

Step 2: Destroy objects off-screen

To make sure our hierarchy doesn't get too cluttered, let's make sure these objects get
destroyed when they leave the screen.

1. Either create a new script or add code to your - Tip: Move your objects in scene view
existing script to make sure objects are destroyed to determine the xyz positions objects
when they leave the screen should be destroyed

By the end of this step, objects should be removed from the hierarchy when they are no longer in
play.

Step 3: Handle object collisions

Now that you have all these moving objects, they're bound to start colliding with each other - we
need to program what should happen when everything collides.

1. If relevant, edit the Rigidbody mass of your objects - Don't worry: If you collide with a
2. If relevant, to change the way your objects collide, powerup or pickup, the actual
create a new Physics material for your objects functionality does not need to be
3. Add tags to your objects so you can accurately test programmed, just the effect
for which objects are colliding with which - Tip: Should use OnTriggerEnter if
4. Use OnCollisionEnter() (for Rigidbody collisions) or objects are being destroyed - but
OnTriggerEnter() (for trigger-based collisions) to remember that “Is Trigger” must be
Destroy or Log messages to the console what checked for this to work!

should happen when certain collisions occur

By the end of this step, objects should destroy, bounce, or do nothing based on collisions.

© Unity 2021 Create with Code - Unit 4

28
Step 4: Make objects into prefabs

Now that the objects are basically behaving the way they should, if they’re going to be
instantiated during gameplay, they need to be prefabs

1. In the Assets directory, create a new Folder called - Tip: When creating new prefabs,
“Prefabs” you have to drag them one at a

2. Drag in each object to create a new prefab for it time

3. After all objects have been turned into prefabs, delete - Tip: Notice that their icons turn
them from the scene blue when they are prefabs

4. Test the objects’ behavior by dragging them from the
Prefabs folder into the scene while the game is running

By the end of this step, all objects that will be spawned during gameplay should be prefabs and
should no longer be in your scene.

Step 5: Make SpawnManager spawn Prefabs

Now that we have all of our prefabs set up, we can create a spawn manager to spawn them at
intervals and, if we want, in random locations.

1. Create an Empty “Spawn Manager” object and attach a - Tip: Name your variables
new SpawnManager.cs script to it “____Prefab” so you know it
2. Create individual GameObject or GameObject array requires a prefab value
variables for your prefabs, then assign them in the - Don't worry: If it's not perfect yet
inspector of if there are some minor bugs -
3. Use the Instantiate(), Random.Range(), and the just get the general idea working

InvokeRepeating() methods to spawn objects at
intervals (random objects, random locations, or both)

4. Right-click on your Assets folder > Export Package then
save a new version in your Backups folder

By the end of this step, objects should be spawned automatically from the appropriate location.

© Unity 2021 Create with Code - Unit 4

29
Lesson Recap

New Progress e Non-player objects prefabs have basic movement
e Objects are destroyed when they leave the screen

e Collisions between objects are handled appropriately
([

Objects are spawned at the appropriate locations on time-based intervals

New Concepts e Creating basic gameplay for a project independently
and Skills

© Unity 2021 Create with Code - Unit 4

30

& unity

Quiz unit4

QUESTION CHOICES
- 00000000
1 You're trying to write some code that creates a random a. Change line 1 to “private float
age between 1 and 100 and prints that age, but there is age”
an error. What would fix the error? b. Add the word “int” to line 8, so
_ _ it says “intage = .."
1. private int age; c. On line 7, change the word
2. “private” to “void”
3. void Sstart() { d. Add a new line after line 8 that
4 Debug.Log(GenerateRandomAge()); says “return age;”
5. }
6
7. private int GenerateRandomAge() {
8. age = Random.Range(1l, 101);
9. }
-0/
2 The following message was displayed in the console: a. Option A
“Monica has 20 dollars”. Which of the line options in the b. Option B
PrintNames function produced it? c. Option C
d. Option D

string[] names = new string[] { "Steve", "Monica", "Eric" };
int money = 5;

void Start() {
money *= 2;
PrintNames();

}

void PrintNames () {
A. Debug.Log("Monica has
B. Debug.Log(names[1] + " has
C. Debug.Log(names[2] + " has
D. Debug.Log(names[Monica] + " has

}

+ money/2 + " dollars");

" + money*2 + " dollars");

+ money*2 + " dollars");

" + money/2 + " dollars");

© Unity 2021 Create with Code - Unit 4

ﬂ
—

3 The code below produces “error CS0029: Cannot

implicitly convert type 'float' to 'UnityEngine.Vector3™”.

m

Which of the following would remove the error?

. private Vector3 startingVelocity;

1
2. void Start() {

3. startingVelocity =
4. }

2.0f;

4 Which of the following follows Unity’s naming
conventions (especially as it relates to capitalization)?

. float forwardInput =
. float ForwardInput
Float forwardInput
. float forwardInput

O N w >

Input.GetAxis("Vertical");
input.GetAxis("Vertical");
Input.getAxis("Vertical");
input.getAxis("vertical");

a. Online 1, change “Vector3” to
“float”

b. On line 3, change “=" to “+

c. EitherAorB

d. None of the above

n

a. Line A
b. Line B
c. LineC
d. LineD

5 You are trying to assign the powerup variable in the
inspector, but it is not showing up in the Player
Controller component. What is the problem?

public class PlayerController :

{

MonoBehaviour

private GameObject powerup;

}

a. You cannot declare a powerup
variable in the Player Controller
Script

b. You cannot assign GameObject
type variables in the inspector

c. The powerup variable should
be public instead of private

d. The PlayerController class
should be private instead of
public

6 Your game has just started and you see the error,
“UnassignedReferenceException: The variable
playerindicator of PlayerController has not been
assigned.” What is likely the solution to the problem?

public class PlayerController :

{

MonoBehaviour

public GameObject playerIndicator;

void Update() {

playerIndicator.transform.position.y = 10;

}
}

© Unity 2021

a. PlayerController variable in the
playerindicator script needs to
be declared

b. The playerindicator variable
needs to be made private

c. The PlayerController script
must be assigned to the player
object

d. An object needs to be dragged
onto the playerindicator
variable in the inspector

Create with Code - Unit 4

32

7 You are trying to create a new method that takes a a. Method A
number and multiplies it by two. Which method would do b. Method B
that? c. Method C

d. Method D

A. private float DoubleNumber() {
return number *= 2;

}

B. private float DoubleNumber(float number) {
return number *= 2;

}

C. private void DoubleNumber(float number) {
return number *= 2;

}

D. private void DoubleNumber() {
return number *= 2;

}
]

8 Which comment best describes the code below? a. // If the player collides with an
enemy, destroy the enemy

public class Enemy : MonoBehaviour b. // If the enemy collides with a
{ spike, destroy the spike

// Comment c. // If the enemy collides with a

private void OnTriggerEnter(Collider other) { spike, destroy the enemy
if(other.CompareTag("Spike")) { d. // If the player collides with a

Destroy(other.gameObject); spike, destroy the spike

)
}
)
]

9 The code below produces the error, “error CS0029: a. On line 1, change “collision” to
Cannot implicitly convert type 'UnityEngine.GameObject' “Rigidbody”
to 'UnityEngine.Rigidbody”. What could be done to fix b. On line 2, change “gameObject”
this issue? to “Rigidbody”
c. On line 3, delete “.gameObject”
1. void OnCollisionEnter(Collision collision) { d. On line 3. add
2 if(collision.gameObject.CompareTag("Enemy")) { “ GetComponent<Rigidbody>()”
3. Rigidbody enemyRb = collision.gameObject; before the semicolon
4.)
5. }

© Unity 2021 Create with Code - Unit 4

33

10 Which of the following statements about a. A and B are correct
functions/methods are correct: b. Only B is correct

c. Band C are correct

d. Only D is correct

e. None are correct

A. Functions/methods must be passed at least one parameter

B. Functions/methods with a “void” return type cannot be
passed parameters

C. A Function/method with an “int” return type could include
the code, “return 0.5f;"

D. If there was a function/method declared as “private void
RenameObject(string newName)”, you could call that
method with “RenameObject();”

© Unity 2021 Create with Code - Unit 4

34

Quiz Answer Key

ANSWER EXPLANATION

1 D
2 B
3 A
4 A
5 C
6 D
7 B
8 B
9 D

10 E

© Unity 2021

Since the method has an “int” return type “private int GenerateRandomAge()”,
it must return an int.

Debug.Log(names|[1] + " has " + money*2 + " dollars"); is correct.

Arrays start with index 0, so “Monica” has the index value of “1” (names|[1]).
In start, money is multiplied by 2, making it 10, so “money*2” would give you
the value of 20.

Changing “Vector3” to “float” would work because you would just be

multiplying a flat by another float. Changing “=" to “+" would not work
because you can't add a float to a Vector3.

Lowercase “float”, camelCase variables, Capitalized class & method names
Making a variable public will make it appear in the inspector.

If the consoles says a variable is not assigned, you most likely forgot to
assign that variable by dragging on object onto it in the inspector.

Since it needs to “return” a value, it should have a return type of “private float”
as opposed to “private void.” Since it needs to take a number, it needs a float
parameter (“float number”).

Since this is the “Enemy” class, we are testing for the enemy colliding with
something. Since it destroys “other.gameObject”, it will destroy the spike.

The code cannot convert a RigidBody type variable to a GameObject type
variable, so you have to get the RigidBody component from the gameObject

A. Functions/methods do not necessarily require parameters

B. Functions/methods with a “void” return type can be passed
parameters

C. A Function/method with an “int” return type could not include the
code, “return 0.5f,", since 0.5f is a float

D. If there was a function/method declared as “private void
RenameObject(string newName)”, you would have to pass it a string
parameter, such as RenameObject(“Steve”);

Create with Code - Unit 4

35

& unity

Bonus Features 4 - share your Work

Steps:
Step 1: Overview

Step 2: Easy: Obstacle pyramids

Step 3: Medium: Oncoming vehicles

Step 5: Hard: Camera switcher

Step 6: Expert: Local multiplayer
Step 7: Hints and solution walkthrough

Step 8: Share your work

Length: 60 minutes

Overview: In this tutorial, you can go way above and beyond what you learned in this
Unit and share what you've made with your fellow creators.

There are four bonus features presented in this tutorial marked as Easy,
Medium, Hard, and Expert. You can attempt any number of these, put your
own spin on them, and then share your work!

This tutorial is entirely optional, but highly recommended for anyone wishing
to take their skills to a new level.

© Unity 2021 Create with Code - Unit 4

36
Step 1: Overview

This tutorial outlines four potential bonus features for the Sumo Battle Prototype at varying levels of
difficulty:

e Easy: Harder enemy

e Medium: Homing rockets

e Hard: Smashingly good

e Expert: Boss battle

Here's what the prototype could look like if you complete all four features:

The Easy and Medium features can probably be completed entirely with skills from this course, but
the Hard and Expert features will require some additional research.

Since this is optional, you can attempt none of them, all of them, or any combination in between.
You can come up with your own original bonus features as well!

Then, at the end of this tutorial, there is an opportunity to share your work.

We highly recommend that you attempt these using relentless Googling and troubleshooting, but if
you do get completely stuck, there are hints and step-by-step solutions available below.

Good luck!

© Unity 2021 Create with Code - Unit 4

37
Step 2: Easy: Harder enemy

Add a new more difficult type of enemy and randomly select which is spawned.

Step 3: Medium: Homing rockets

Create a new powerup that gives the player the ability to launch projectiles at enemies to knock
them off (or something that automatically fires projectiles in all directions when the powerup is
enabled).

© Unity 2021 Create with Code - Unit 4

38
Step 5: Hard: Smash attack

Create a new powerup that allows the player to hop up into the air and smash down onto the
ground, sending any enemies nearby flying away from the player. Ideally, the closer an enemy is,
the more it should be impacted by the smash.

Step 6: Expert: Boss battle

After a certain number of waves, program a mini “boss battle,” where the boss has some
completely new abilities. For example, maybe the boss can fire projectiles at you, maybe it is
extremely agile, or maybe it occasionally generates little minions that come after you.

© Unity 2021 Create with Code - Unit 4

39
Step 7: Hints and solution walkthrough

Hints:
e Easy: Harder enemy
o Try using an array for the enemy prefabs.
e Medium: Homing rockets
o Try using an enum to differentiate the power ups
e Hard: Smashingly good
o Extend the enum you created in the previous challenge
e Expert: Boss battle
o Create a new SpawnBossWave function that only runs if the wave number is a
multiple of a particular value.

Solution walkthrough
If you are really stuck, download the step-by-step solution walkthrough.
Note that there are likely many ways to implement these features - this is only one suggestion.

Step 8: Share your work

Have you implemented any of these bonus features? Have you added any new, unique features?
Have you applied these new features to another project?

We would love to see what you've created!

Please take a screenshot of your project or do a screen-recording walking us through it, then post
it here to share what you've made.

We highly recommend that you comment on at least one other creator's submission. What do you
like about the project? What would be a cool new feature they might consider adding?

© Unity 2021 Create with Code - Unit 4

https://connect-prd-cdn.unity.com/20210505/9502c2c1-7535-48dd-ba2d-5ed8cab90107/Unit%204%20-%20Bonus%20Features%20Solutions.pdf?_ga=2.233637726.1186801097.1620052249-59568313.1601905412

