
1

Create with Code
Unit 4 Lesson Plans

© Unity 2021 Create with Code - Unit 4



2

4.1 Watch Where You’re Going

Steps:
Step 1: Create project and open scene

Step 2: Set up the player and add a texture

Step 3: Create a focal point for the camera

Step 4: Rotate the focal point by user input

Step 5: Add forward force to the player

Step 6: Move in direction of focal point

Example of project by end of lesson

Length: 60 minutes

Overview: First thing’s first, we will create a new prototype and download the starter
files! You’ll notice a beautiful island, sky, and particle effect... all of which can
be customized! Next you will allow the player to rotate the camera around the
island in a perfect radius, providing a glorious view of the scene. The player
will be represented by a sphere, wrapped in a detailed texture of your choice.
Finally you will add force to the player, allowing them to move forwards or
backwards in the direction of the camera.

Project
Outcome:

The camera will evenly rotate around a focal point in the center of the island,
provided a horizontal input from the player. The player will control a textured
sphere, and move them forwards or backwards in the direction of the
camera’s focal point.

Learning
Objectives:

By the end of this lesson, you will be able to:
-  Apply Texture wraps to objects
- Attach a camera to its focal point using parent-child relationships
- Transform objects based on local XYZ values

© Unity 2021 Create with Code - Unit 4

https://docs.google.com/document/d/1O3XwIy4lMnZAGojD0FrXXSJw1DOlAfO1zMmINTggsF0/edit#heading=h.9xw2rvio6erz
https://docs.google.com/document/d/1O3XwIy4lMnZAGojD0FrXXSJw1DOlAfO1zMmINTggsF0/edit#heading=h.jpvf7062snkj


3

Step 1: Create project and open scene
You’ve done it before, and it’s time to do it again... we must start a new project and import the
starter files.
1. Open Unity Hub and create an empty “Prototype 4”

project in your course directory on the correct
Unity version.
If you forget how to do this, refer to the
instructions in Lesson 1.1 - Step 1

2. Click to download the Prototype 4 Starter Files,
extract the compressed folder, and then import the
.unitypackage into your project.
If you forget how to do this, refer to the
instructions in Lesson 1.1 - Step 2

3. Open the Prototype 4 scene and delete the Sample
Scene without saving

4. Click Run to see the particle effects

- Don’t worry: You can change texture of
floating island and the color of the sky
later

- Don’t worry: We’re in
isometric/orthographic view for a
reason: It just looks nicer when we
rotate around the island

© Unity 2021 Create with Code - Unit 4

https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cb7a1acedbc2a10b7261d15
https://connect-prd-cdn.unity.com/20210507/c8291200-b024-4de8-8c86-2bfd0f323be3/Prototype%204%20-%20Starter%20Files.zip?_ga=2.33909089.1186801097.1620052249-59568313.1601905412
https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cca0230edbc2a635ca5d6d2


4

Step 2: Set up the player and add a texture
We’ve got an island for the game to take place on, and now we need a sphere for the player to
control and roll around.

1. In the Hierarchy, create 3D Object > Sphere
2. Rename it “Player”, reset its position and increase its XYZ scale

to 1.5
3. Add a RigidBody component to the Player
4. From the Library > Textures, drag a texture onto the sphere

- New Concept:
Texture wraps

Step 3: Create a focal point for the camera
If we want the camera to rotate around the game in a smooth and cinematic fashion, we need
to pin it to the center of the island with a focal point.

1. Create a new Empty Object and rename it “Focal Point”,
2. Reset its position to the origin (0, 0, 0), and make the

Camera a child object of it
3. Create a new “Scripts” folder, and a new “RotateCamera”

script inside it
4. Attach the “RotateCamera” script to the Focal Point

- Don’t worry: This whole “focal
point” business may be
confusing at first, but it will make
sense once you see it in action

- Tip: Try rotating the Focal point
around the Y axis and see the
camera rotate in scene view

© Unity 2021 Create with Code - Unit 4



5

Step 4: Rotate the focal point by user input
Now that the camera is attached to the focal point, the player must be able to rotate it - and the
camera child object - around the island with horizontal input.

1. Create the code to rotate the camera based on
rotationSpeed and horizontalInput

2. Tweak the rotation speed value to get the speed
you want

- Tip: Horizontal input should be
familiar, we used it all the way back in
Unit 1! Feel free to reference your old
code for guidance.

public float rotationSpeed;

void Update()
{

float horizontalInput = Input.GetAxis("Horizontal");
transform.Rotate(Vector3.up, horizontalInput * rotationSpeed * Time.deltaTime);

}

Step 5: Add forward force to the player
The camera is rotating perfectly around the island, but now we need to move the player.

1. Create a new “PlayerController” script, apply it to the
Player, and open it

2. Declare a new public float speed variable and initialize it
3. Declare a new private Rigidbody playerRb and initialize

it in Start()
4. In Update(), declare a new forwardInput variable based

on “Vertical” input
5. Call the AddForce() method to move the player forward

based forwardInput

- Tip: Moving objects with
RigidBody and Addforce should
be familiar, we did it back in Unit
3! Feel free to reference old code.

- Don’t worry: We don’t have
control over its direction yet -
we’ll get to that next

private Rigidbody playerRb;
public float speed = 5.0f;

void Start() {
playerRb = GetComponent<Rigidbody>(); }

void Update() {
float forwardInput = Input.GetAxis("Vertical");
playerRb.AddForce(Vector3.forward * speed * forwardInput); }

© Unity 2021 Create with Code - Unit 4



6

Step 6: Move in direction of focal point
We’ve got the ball rolling, but it only goes forwards and backwards in a single direction! It
should instead move in the direction the camera (and focal point) are facing.

1. Declare a new private GameObject focalPoint; and
initialize it in Start(): focalPoint =
GameObject.Find("Focal Point");

2. In the AddForce call, Replace Vector3.forward with
focalPoint.transform.forward

- New Concept: Global vs Local XYZ
- Tip: Global XYZ directions relate to the

entire scene, whereas local XYZ
directions relate to the object in
question

private GameObject focalPoint;

void Start() {
playerRb = GetComponent<Rigidbody>();
focalPoint = GameObject.Find("Focal Point"); }

void Update() {
float forwardInput = Input.GetAxis("Vertical");
playerRb.AddForce(Vector3.forward focalPoint.transform.forward
* speed * forwardInput); }

Lesson Recap
New
Functionality

● Camera rotates around the island based on horizontal input
● Player rolls in direction of camera based on vertical input

New Concepts
and Skills

● Texture Wraps
● Camera as child object
● Global vs Local coordinates
● Get direction of other object

Next Lesson ● In the next lesson, we’ll add more challenge to the player, by creating
enemies that chase them in the game.

© Unity 2021 Create with Code - Unit 4



7

4.2 Follow the Player

Steps:
Step 1: Add an enemy and a physics material

Step 2: Create enemy script to follow player

Step 3: Create a lookDirection variable

Step 4: Create a Spawn Manager for the enemy

Step 5: Randomly generate spawn position

Step 6: Make a method return a spawn point

Example of project by end of lesson

Length: 60 minutes

Overview: The player can roll around to its heart’s content… but it has no purpose. In
this lesson, we fill that purpose by creating an enemy to challenge the player!
First we will give the enemy a texture of your choice, then give it the ability to
bounce the player away... potentially knocking them off the cliff. Lastly, we
will let the enemy chase the player around the island and spawn in random
positions.

Project
Outcome:

A textured and spherical enemy will spawn on the island at start, in a random
location determined by a custom function. It will chase the player around the
island, bouncing them off the edge if they get too close.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Apply Physics Materials to make game objects bouncy
- Normalize vectors to point the enemy in the direction of the player
- Randomly spawn with Random.Range on two axes
- Write more advanced custom functions and variables to make your code

clean and professional

© Unity 2021 Create with Code - Unit 4



8

Step 1: Add an enemy and a physics material
Our camera rotation and player movement are working like a charm. Next we’re going to set up
an enemy and give them them some special new physics to bounce the player away!
1. Create a new Sphere, rename it “Enemy” reposition

it, and drag a texture onto it
2. Add a new RigidBody component and adjust its

XYZ scale, then test
3. In a new “Physics Materials” folder, Create >

Physics Material, then name it “Bouncy”
4. Increase the Bounciness to “1”, change Bounce

Combine to “Multiply”,  apply it to your player and
enemy, then test

- Don’t worry: If your game is lagging,
uncheck the “Active” checkbox for your
clouds

- New Concept: Physics Materials
- New Concept: Bounciness property

and Bounce Combine

© Unity 2021 Create with Code - Unit 4



9

Step 2: Create enemy script to follow player
The enemy has the power to bounce the player away, but only if the player approaches it. We
must tell the enemy to follow the player’s position, chasing them around the island.

1. Make a new “Enemy” script and attach it to the
Enemy

2. Declare 3 new variables for Rigidbody enemyRb;,
GameObject player;, and public float speed;

3. Initialize enemyRb = GetComponent Rigidbody>();
and player = GameObject.Find("Player");

4. In Update(), AddForce towards in the direction
between the Player and the Enemy

- Tip: Imagine we’re generating this new
vector by drawing an arrow from the
enemy to the player.

- Tip: We should start thinking ahead
and writing our variables in advance.
Think… what are you going to need?

- Tip: When normalized, a vector keeps
the same direction but its length is 1.0,
forcing the enemy to try and keep up

public float speed = 3.0f;
private Rigidbody enemyRb;
private GameObject player;

void Update() {
enemyRb.AddForce((player.transform.position
- transform.position).normalized * speed); }

Step 3: Create a lookDirection variable
The enemy is now rolling towards the player, but our code is a bit messy. Let’s clean up by
adding a variable for the new vector.

1. In Update(), declare a new Vector3 lookDirection variable
2. Set Vector3 lookDirection = (player.transform.position -

transform.position).normalized;
3. Implement the lookDirection variable in the AddForce call

- Tip: As always, adding
variables makes the code more
readable

void Update() {
Vector3 lookDirection = (player.transform.position
- transform.position).normalized;

enemyRb.AddForce(lookDirection (player.transform.position
- transform.position).normalized * speed); }

© Unity 2021 Create with Code - Unit 4



10

Step 4: Create a Spawn Manager for the enemy
Now that the enemy is acting exactly how we want, we’re going to turn it into a prefab so it can
be instantiated by a Spawn Manager.

1. Drag Enemy into the Prefabs folder to create a new Prefab,
then delete Enemy from scene

2. Create a new “Spawn Manager” object, attach a new
“SpawnManager” script, and open it

3. Declare a new public GameObject enemyPrefab variable then
assign the prefab in the inspector

4. In Start(), instantiate a new enemyPrefab at a predetermined
location

public GameObject enemyPrefab;

void Start()
{

Instantiate(enemyPrefab, new Vector3(0, 0, 6),
enemyPrefab.transform.rotation); }

Step 5: Randomly generate spawn position
The enemy spawns at start,  but it always appears in the same spot. Using the familiar Random
class, we can spawn the enemy in a random position.

1. In SpawnManager.cs, in Start(), create new randomly
generated X and Z

2. Create a new Vector3 randomPos variable with those
random X and Z positions

3. Incorporate the new randomPos variable into the
Instantiate call

4. Replace the hard-coded values with a spawnRange
variable

5. Start and Restart your project to make sure it’s working

- Tip: Remember, we used
Random.Range all the way back
in Unit 2! Feel free to reference
old code.

public GameObject enemyPrefab;
private float spawnRange = 9;

void Start() {
float spawnPosX = Random.Range(-9, 9 -spawnRange, spawnRange);
float spawnPosZ = Random.Range(-9, 9 -spawnRange, spawnRange);
Vector3 randomPos = new Vector3(spawnPosX, 0, spawnPosZ);
Instantiate(enemyPrefab, randomPos, enemyPrefab.transform.rotation); }

© Unity 2021 Create with Code - Unit 4



11

Step 6: Make a method return a spawn point
The code we use to generate a random spawn position is perfect, and we’re going to be using it
a lot. If we want to clean the script and use this code later down the road, we should store it in a
custom function.

1. Create a new function Vector3
GenerateSpawnPosition() { }

2. Copy and Paste the spawnPosX and spawnPosZ
variables into the new method

3. Add the line to return randomPos; in your new
method

4. Replace the code in your Instantiate call with your
new function name: GenerateSpawnPosition()

- Tip: This function will come in handy
later, once we randomize a spawn
position for the powerup

- New Concept: Functions that return a
value

- Tip: This function is different from
“void” calls, which do not return a
value. Look at “GetAxis” in
PlayerController for example - it returns
a float

void Start() {
Instantiate(enemyPrefab, GenerateSpawnPosition()
new Vector3(spawnPosX, 0, spawnPosZ), enemyPrefab.transform.rotation);
float spawnPosX = Random.Range(-spawnRange, spawnRange);
float spawnPosZ = Random.Range(-spawnRange, spawnRange); }

private Vector3 GenerateSpawnPosition () {
float spawnPosX = Random.Range(-spawnRange, spawnRange);
float spawnPosZ = Random.Range(-spawnRange, spawnRange);
Vector3 randomPos = new Vector3(spawnPosX, 0, spawnPosZ);
return randomPos; }

Lesson Recap
New
Functionality

● Enemy spawns at random location on the island
● Enemy follows the player around
● Spheres bounce off of each other

New Concepts
and Skills

● Physics Materials
● Defining vectors in 3D space
● Normalizing values
● Methods with return values

Next Lesson ● In our next lesson, we’ll create ways to fight back against these enemies
using Powerups!

© Unity 2021 Create with Code - Unit 4



12

4.3 PowerUp and CountDown

Steps:
Step 1: Choose and prepare a powerup

Step 2: Destroy powerup on collision

Step 3: Test for collision with a powerup

Step 4: Apply extra knockback with powerup

Step 5: Create Countdown Routine for powerup

Step 6: Add a powerup indicator

Example of project by end of lesson

Length: 60 minutes

Overview: The enemy chases the player around the island, but the player needs a better
way to defend themselves... especially if we add more enemies. In this
lesson, we’re going to create a powerup that gives the player a temporary
strength boost, shoving away enemies that come into contact! The powerup
will spawn in a random position on the island, and highlight the player with
an indicator when it is picked up. The powerup indicator and the powerup
itself will be represented by stylish game assets of your choice.

Project
Outcome:

A powerup will spawn in a random position on the map. Once the player
collides with this powerup, the powerup will disappear and the player will be
highlighted by an indicator. The powerup will last for a certain number of
seconds after pickup, granting the player super strength that blasts away
enemies.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Write informative debug messages with Concatenation and variables
- Repeat functions with the power of IEnumerator and Coroutines
- Use SetActive to make game objects appear and disappear from the scene

© Unity 2021 Create with Code - Unit 4



13

Step 1: Choose and prepare a powerup
In order to add a completely new gameplay mechanic to this project, we will introduce a new
powerup object that will give the player temporary superpowers.
1. From the Library, drag a Powerup object into the scene,

rename it “Powerup” and edit its scale & position
2. Add a Box Collider to the powerup, click Edit Collider to

make sure it fits, then check the “Is Trigger” checkbox
3. Create a new “Powerup” tag and apply it to the powerup
4. Drag the Powerup into the Prefabs folder to create a new

“Original Prefab”

- Warning: Remember, you still
have to apply the tag after it
has been created.

Step 2: Destroy powerup on collision
As a first step to getting the powerup working, we’ll make it disappear when the player hits it
and set up a new boolean variable to track that the player got it.

1. In PlayerController.cs, add a new OnTriggerEnter()
method

2. Add an if-statement that destroys
other.CompareTag("Powerup") powerup on
collision

3. Create a new public bool hasPowerup; and set
hasPowerup = true; when you collide with the
Powerup

- Don’t worry: If this doesn’t work, make
sure that the Powerup’s collider “Is
trigger” and player’s collider is NOT

- Tip: Make sure hasPowerup = true in
the inspector when you collide

public bool hasPowerup

private void OnTriggerEnter(Collider other) {
if (other.CompareTag("Powerup")) {

hasPowerup = true;
Destroy(other.gameObject); } }

© Unity 2021 Create with Code - Unit 4



14

Step 3: Test for enemy and powerup
The powerup will only come into play in a very particular circumstance: when the player has a
powerup AND they collide with an enemy - so we’ll first test for that very specific condition.

1. Create a new “Enemy” tag and apply it to the
Enemy Prefab

2. In PlayerController.cs, add the OnCollisionEnter()
function

3. Create the if-statement with the double-condition
testing for enemy tag and hasPowerup boolean

4. Create a Debug.Log to make sure it’s working

- Tip: OnTriggerEnter is good for stuff
like picking up powerups, but you
should use OnCollisionEnter when you
want something to do with physics

- New Concept: Concatenation in Debug
messages

- Tip: When you concatenate a variable
in a debug message, it will returns its
VALUE not its name

private void OnCollisionEnter(Collision collision) {
if (collision.gameObject.CompareTag("Enemy") && hasPowerup) {

Debug.Log("Collided with " + collision.gameObject.name
+ " with powerup set to " + hasPowerup);

}
}

Step 4: Apply extra knockback with powerup
With the condition for the powerup set up perfectly, we are now ready to program the actual
powerup ability: when the player collides with an enemy, the enemy should go flying!

1. In OnCollisionEnter() declare a new local variable
to get the Enemy’s Rigidbody component

2. Declare a new variable to get the direction away
from the player

3. Add an impulse force to the enemy, using a new
powerupStrength variable

- Tip: Reference the code in Enemy.cs
that makes the enemy follow the
player. In a way, we’re reversing that
code in order to push the enemy away.

- Don’t worry: No need to use
.Normalize, since they’re colliding

private float powerupStrength = 15.0f;

private void OnCollisionEnter(Collision collision) {
if (collision.gameObject.CompareTag("Enemy") && hasPowerup) {

Rigidbody enemyRigidbody = collision.gameObject.GetComponent<Rigidbody>();
Vector3 awayFromPlayer = (collision.gameObject.transform.position
- transform.position);

Debug.Log("Player collided with " + collision.gameObject
+ " with powerup set to " + hasPowerup);
enemyRigidbody.AddForce(awayFromPlayer * powerupStrength,
ForceMode.Impulse); } }

© Unity 2021 Create with Code - Unit 4



15

Step 5: Create Countdown Routine for powerup
It wouldn’t be fair to the enemies if the powerup lasted forever - so we’ll program a countdown
timer that starts when the player collects the powerup, removing the powerup ability when the
timer is finished.

1. Add a new IEnumerator
PowerupCountdownRoutine () {}

2. Inside the PowerupCountdownRoutine, wait 7
seconds, then disable the powerup

3. When player collides with powerup, start the
coroutine

- New Concept: IEnumerator
- New Concept: Coroutines
- Tip: WaitForSeconds()

private void OnTriggerEnter(Collider other) {
if (other.CompareTag("Powerup")) {

hasPowerup = true;
Destroy(other.gameObject);
StartCoroutine(PowerupCountdownRoutine()); } }

IEnumerator PowerupCountdownRoutine() {
yield return new WaitForSeconds(7); hasPowerup = false; }

© Unity 2021 Create with Code - Unit 4



16

Step 6: Add a powerup indicator
To make this game a lot more playable, it should be clear when the player does or does not
have the powerup, so we’ll program a visual indicator to display this to the user.

1. From the Library, drag a Powerup object into the scene, rename it
“Powerup Indicator”, and edit its scale

2. Uncheck the “Active” checkbox in the inspector
3. In PlayerController.cs, declare a new public GameObject

powerupIndicator variable, then assign the Powerup Indicator
variable in the inspector

4. When the player collides with the powerup, set the indicator object
to Active, then set to Inactive when the powerup expires

5. In Update(), set the Indicator position to the player’s position + an
offset value

- New Function:
SetActive

- Tip: Make sure the
indicator is turning on
and off before making
it follow the player

public GameObject powerupIndicator

void Update() {
... powerupIndicator.transform.position = transform.position
+ new Vector3(0, -0.5f, 0); }

private void OnTriggerEnter(Collider other) {
if (other.CompareTag("Powerup")) {

... powerupIndicator.gameObject.SetActive(true); } }

IEnumerator PowerupCountdownRoutine() {
... powerupIndicator.gameObject.SetActive(false); }

Lesson Recap
New
Functionality

● When the player collects a powerup, a visual indicator appears
● When the player collides with an enemy while they have the powerup, the

enemy goes flying
● After a certain amount of time, the powerup ability and indicator disappear

New Concepts
and Skills

● Debug concatenation
● Local component variables
● IEnumerators and WaitForSeconds()
● Coroutines
● SetActive(true/false)

Next Lesson ● We’ll start generating waves of enemies for our player to fend off!

© Unity 2021 Create with Code - Unit 4



17

4.4 For-Loops For Waves

Steps:
Step 1: Write a for-loop to spawn 3 enemies

Step 2: Give the for-loop a parameter

Step 3: Destroy enemies if they fall off

Step 4: Increase enemyCount with waves

Step 5: Spawn Powerups with new waves

Example of project by end of lesson

Length: 60 minutes

Overview: We have all the makings of a great game; A player that rolls around and
rotates the camera, a powerup that grants super strength, and an enemy that
chases the player until the bitter end. In this lesson we will wrap things up by
putting these pieces together!
First we will enhance the enemy spawn manager, allowing it to spawn
multiple enemies and increase their number every time a wave is defeated.
Lastly we will spawn the powerup with every wave, giving the player a chance
to fight back against the ever-increasing horde of enemies.

Project
Outcome:

The Spawn Manager will operate in waves, spawning multiple enemies and a
new powerup with each iteration. Every time the enemies drop to zero, a new
wave is spawned and the enemy count increases.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Repeat functions with For-loops
- Increment integer values in a loop with the ++ operator
- Target objects in a scene with FindObjectsOfType
- Return the length of an array as an integer with .Length

© Unity 2021 Create with Code - Unit 4



18

Step 1: Write a for-loop to spawn 3 enemies
We should challenge the player by spawning more than one enemy. In order to do so, we will
repeat enemy instantiation with a loop.
1. In SpawnManager.cs, in Start(), replace single

Instantiation with a for-loop that spawns 3
enemies

2. Move the for-loop to a new void
SpawnEnemyWave() function, then call that
function from Start()

- New Concept: For-loops
- Don’t worry: Loops are a bit confusing

at first, but they make sense
eventually. Loops are powerful tools
that programmers use often

- New Concept: ++ Increment Operator

void Start() {
SpawnEnemyWave();
for (int i = 0; i < 3; i++) {

Instantiate(enemyPrefab, GenerateSpawnPosition(),
enemyPrefab.transform.rotation); } }

void SpawnEnemyWave() {
for (int i = 0; i < 3; i++) {

Instantiate(enemyPrefab, GenerateSpawnPosition(),
enemyPrefab.transform.rotation); } }

Step 2: Give the for-loop a parameter
Right now, SpawnEnemyWave spawns exactly 3 enemies, but if we’re going to dynamically
increase the number of enemies that spawn during gameplay, we need to be able to pass
information to that method.

1. Add a parameter int enemiesToSpawn to the
SpawnEnemyWave function

2. Replace i < __ with i < enemiesToSpawn
3. Add this new variable to the function call in Start():

SpawnEnemyWave(___);

- New Concept: Custom methods with
parameters

- Tip: GenerateSpawnPosition returns a
value, SpawnEnemyWave does not.
SpawnEnemyWave takes a parameter,
GenerateSpawnPosition does not.

void Start() {
SpawnEnemyWave(3); }

void SpawnEnemyWave(int enemiesToSpawn) {
for (int i = 0; i < 3 enemiesToSpawn; i++) {

Instantiate(enemyPrefab, GenerateSpawnPosition(),
enemyPrefab.transform.rotation); } }

© Unity 2021 Create with Code - Unit 4



19

Step 3: Destroy enemies if they fall off
Once the player gets rid of all the enemies, they’re left feeling a bit lonely. We need to destroy
enemies that fall, and spawn a new enemy wave once the last one is vanquished!

1. In Enemy.cs, destroy the enemies if their position
is less than a -Y value

2. In SpawnManager.cs, declare a new public int
enemyCount variable

3. In Update(), set enemyCount =
FindObjectsOfType<Enemy>().Length;

4. Write the if-statement that if enemyCount == 0
then SpawnEnemyWave

- New Function: FindObjectsOfType

void Update() {
... if (transform.position.y < -10) { Destroy(gameObject); } }

<------>
public int enemyCount

void Update() {
enemyCount = FindObjectsOfType<Enemy>().Length;
if (enemyCount == 0) { SpawnEnemyWave(1); } }

Step 4: Increase enemyCount with waves
Now that we control the amount of enemies that spawn, we should increase their number in
waves. Every time the player defeats a wave of enemies, more should rise to take their place.

1. Declare a new public int waveNumber = 1;, then
implement it in SpawnEnemyWave(waveNumber);

2. In the if-statement that tests if there are 0 enemies
left, increment waveNumber by 1

- Tip: Incrementing with the ++ operator
is very handy, you may find yourself
using it in the future

public int waveNumber = 1;

void Start() {
SpawnEnemyWave(3 waveNumber); }

void Update() {
enemyCount = FindObjectsOfType<Enemy>().Length;
if (enemyCount == 0) { waveNumber++; SpawnEnemyWave(1 waveNumber); } }

© Unity 2021 Create with Code - Unit 4



20

Step 5: Spawn Powerups with new waves
Our game is almost complete, but we’re missing something. Enemies continue to spawn with
every wave, but the powerup gets used once and disappears forever, leaving the player
vulnerable. We need to spawn the powerup in a random position with every wave, so the player
has a chance to fight back.

1. In SpawnManager.cs, declare a new public
GameObject powerupPrefab variable, assign the
prefab in the inspector and delete it from the
scene

2. In Start(), Instantiate a new Powerup
3. Before the SpawnEnemyWave() call, Instantiate a

new Powerup

- Tip: Now that we have a very playable
game, let’s test and tweak values

public GameObject powerupPrefab;

void Start() {
... Instantiate(powerupPrefab, GenerateSpawnPosition(),
powerupPrefab.transform.rotation); }

void Update() {
... if (enemyCount == 0) { ... Instantiate(powerupPrefab,

GenerateSpawnPosition(), powerupPrefab.transform.rotation); } }

Lesson Recap
New
Functionality

● Enemies spawn in waves
● The number of enemies spawned increases after every wave is defeated
● A new power up spawns with every wave

New Concepts
and Skills

● For-loops
● Increment (++) operator
● Custom methods with parameters
● FindObjectsOfType

© Unity 2021 Create with Code - Unit 4



21

Challenge 4
Soccer Scripting

Challenge
Overview:

Use the skills you learned in the Sumo Battle prototype in a completely
different context: the soccer field. Just like in the prototype, you will control a
ball by rotating the camera around it and applying a forward force, but instead
of knocking them off the edge, your goal is to knock them into the opposing
net while they try to get into your net. Just like in the Sumo Battle, after every
round a new wave will spawn with more enemy balls, putting your defense to
the test. However, almost nothing in this project is functioning! It’s your job to
get it working correctly.

Challenge
Outcome:

- Enemies move towards your net, but you can hit them to deflect them away
- Powerups apply a temporary strength boost, then disappear after 5 seconds
- When there are no more enemy balls, a new wave spawns with 1 more

enemy

Challenge
Objectives:

In this challenge, you will reinforce the following skills/concepts:
- Defining Vectors by subtracting one location in 3D space from another
- Track the number of objects of a certain type in a scene to trigger certain

events
- Using Coroutines to perform actions based on a timed interval
- Using for-loops and dynamic variables to run code a particular number of

times
- Resolving errors related to null references of unassigned variables

Challenge
Instructions:

- Open your Prototype 4 project
- Download the "Challenge 4 Starter Files" from the Tutorial Materials section,

then double-click on it to Import
- In the Project Window > Assets > Challenge 4 > Instructions folder, use the

resources as a guide to complete this challenge

© Unity 2021 Create with Code - Unit 4



22

Challenge Task Hint

1 Hitting an enemy
sends it back towards
you

When you hit an enemy, it
should send it away from the
player

In PlayerControllerX.cs, to get a
Vector away from the player, you
should subtract the [enemy position]
minus the [player’s position] - not the
reverse

2 A new wave spawns
when the player gets a
powerup

A new wave should spawn
when all enemy balls have
been removed

In SpawnManagerX.cs, check that the
enemyCount variable is being set
correctly

3 The powerup never
goes away

The powerup should only last
for a certain duration, then
disappear

In PlayerControllerX.cs, the
PowerupCoolDown Coroutine code
looks good, but this coroutine is
never actually called with the
StartCoroutine() method

4 2 enemies are
spawned in every
wave

One enemy should be
spawned in wave 1, two in
wave 2, three in wave 3, etc

In SpawnManagerX.cs, the for-loop
that spawns enemy should make use
of the enemiesToSpawn parameter

5 The enemy balls are
not moving anywhere

The enemy balls should go
towards the “Player Goal”
object

There is an error in EnemyX.cs:
“NullReferenceException: Object
reference not set to an instance of an
object”. It looks like the playerGoal
object is never assigned.

Bonus Challenge Task Hint

X The player needs a
turbo boost

The player should get a
speed boost whenever the
player presses spacebar -
and a particle effect should
appear when they use it

In PlayerController, add a simple
if-statement that adds an “impulse”
force if spacebar is pressed. To add a
particle effect, first attach it as a child
object of the Focal Point.

Y The enemies never get
more difficult

The enemies’ speed should
increase in speed by a small
amount with every new wave

You’ll need to track and increase the
enemy speed in SpawnManagerX.cs.
Then in EnemyX.cs, reference that
speed variable and set it in Start().

© Unity 2021 Create with Code - Unit 4



23

Challenge Solution

1 In PlayerControllerX.cs, in OnCollisionEnter(), the awayFromPlayer Vector3 is in the opposite
direction it should be.

Vector3 awayFromPlayer = transform.position -

other.gameObject.transform.position;

= other.gameObject.transform.position -

transform.position;

2 In SpawnManagerX.cs, the enemyCount variable is counting the number of objects with a
“Powerup” tag - it should be counting the number of objects with an “Enemy” tag

void Update() {

enemyCount = GameObject.FindGameObjectsWithTag("Powerup Enemy").Length;

...

}

3 In PlayerControllerX.cs, in the OnTriggerEnter() method, you need to initiate the
PowerupCooldown Coroutine in order to begin the countdown process

private void OnTriggerEnter(Collider other) {

if (other.gameObject.CompareTag("Powerup"))  {

...

StartCoroutine(PowerupCooldown());

}

}

4 In SpawnManagerX.cs, the for-loop that spawns enemy should make use of the
enemiesToSpawn parameter

for (int i = 0; i < 2 enemiesToSpawn; i++) {

Instantiate(enemyPrefab, GenerateSpawnPosition(), ...

}

5 In EnemyX.cs, the playerGoal variable is not initialized - initialize it in the Start() method

void Start() {
enemyRb = GetComponent<Rigidbody>();
playerGoal = GameObject.Find("Player Goal");

;}

© Unity 2021 Create with Code - Unit 4



24

Bonus Challenge Solution

X1 To add a turbo boost, In PlayerControllerX.cs, declare a new turboBoost float variable, then in
Update(), add a simple if-statement that adds an “impulse” force in the direction of the focal
point if spacebar is pressed:

private float turboBoost = 10;

void Update() {

...

if (Input.GetKeyDown(KeyCode.Space)) {
playerRb.AddForce(focalPoint.transform.forward * turboBoost, ForceMode.Impulse);

}

}

X2 Add the Smoke_Particle prefab as a child object of the focal point (next to the camera), then in
PlayerControllerX.cs, declare a new turboSmoke particle variable and assign it in the inspector

X3 In PlayerControllerX.cs, in the if-statement checking if the player presses spacebar, play the
particle

if (Input.GetKeyDown(KeyCode.Space)) {

playerRb.AddForce(focalPoint.transform.forward * turboBoost, ForceMode.Impulse);

turboSmoke.Play();

}

Y1 In SpawnManagerX.cs, declare and initialize a new public enemySpeed variable, then increase
it by a certain amount every time a wave is spawned:

public int enemyCount;

public float enemySpeed = 50;

void SpawnEnemyWave(int enemiesToSpawn) {

...

waveCount++;

enemyCount += 25;

}

© Unity 2021 Create with Code - Unit 4



25

Y2 In EnemyX.cs, declare a new spawnManagerXScript variable, get a reference to it in Start(),
then set the enemy’s speed variable to your new enemySpeed variable

private GameObject playerGoal;

private SpawnManagerX spawnManagerXScript;

void Start() {

enemyRb = GetComponent<Rigidbody>();

playerGoal = GameObject.Find("Player Goal");

spawnManagerXScript = GameObject.Find("Spawn Manager").GetComponent<SpawnManagerX>();

speed = spawnManagerXScript.enemySpeed;

}

Y3 To test, make the speed variable in EnemyX.cs public and check the enemies’ speed when they
are spawned in different waves

© Unity 2021 Create with Code - Unit 4



26

Unit 4 Lab
Basic Gameplay
Steps:
Step 1: Give objects basic movement

Step 2: Destroy objects off-screen

Step 3: Handle object collisions

Step 4: Make objects into prefabs

Step 5: Make SpawnManager spawn Prefabs

Example of progress by end of lab

Length: 60 minutes

Overview: In this lab, you will work with all of your non-player objects in order to bring
your project to life with its basic gameplay. You will give your projectiles,
pickups, or enemies their basic movement and collision detection, make
them into prefabs, and have them spawned randomly by a spawn manager.
By the end of this lab, you should have a glimpse into the core functionality
of your game.

Project
Outcome:

Non-player objects are spawned at appropriate locations in the scene with
basic movement. When objects collide with each other, they react as
intended, by either bouncing or being destroyed.

Learning
Objectives:

By the end of this lab, you will be able to:
- More comfortably program basic movement
- More comfortably handle object collisions
- More comfortably spawn object prefabs on timed intervals

© Unity 2021 Create with Code - Unit 4



27

Step 1: Give objects basic movement
Before you spawn objects into your scene, they should move the way you want.

1. If relevant, add Rigidbody components to your
non-player objects

2. Create a new script(s) for the objects that will be
instantiated during gameplay and attach them to
their respective objects (including projectiles or
pickups)

3. Program the basic movement for your objects and
test that they work

- Tip: Make sure you uncheck “use
gravity” if you don’t want them to fall

- Tip: In the collider component, check
“is trigger” if you don’t want actual
collisions

By the end of this step, all objects should basically move the way they should in the game.

Step 2: Destroy objects off-screen
To make sure our hierarchy doesn’t get too cluttered, let’s make sure these objects get
destroyed when they leave the screen.
1. Either create a new script or add code to your

existing script to make sure objects are destroyed
when they leave the screen

- Tip: Move your objects in scene view
to determine the xyz positions objects
should be destroyed

By the end of this step, objects should be removed from the hierarchy when they are no longer in
play.

Step 3: Handle object collisions
Now that you have all these moving objects, they’re bound to start colliding with each other - we
need to program what should happen when everything collides.
1. If relevant, edit the Rigidbody mass of your objects
2. If relevant, to change the way your objects collide,

create a new Physics material for your objects
3. Add tags to your objects so you can accurately test

for which objects are colliding with which
4. Use OnCollisionEnter() (for Rigidbody collisions) or

OnTriggerEnter() (for trigger-based collisions) to
Destroy or Log messages to the console what
should happen when certain collisions occur

- Don’t worry: If you collide with a
powerup or pickup, the actual
functionality does not need to be
programmed, just the effect

- Tip: Should use OnTriggerEnter if
objects are being destroyed - but
remember that “Is Trigger” must be
checked for this to work!

By the end of this step, objects should destroy, bounce, or do nothing based on collisions.

© Unity 2021 Create with Code - Unit 4



28

Step 4: Make objects into prefabs
Now that the objects are basically behaving the way they should, if they’re going to be
instantiated during gameplay, they need to be prefabs

1. In the Assets directory, create a new Folder called
“Prefabs”

2. Drag in each object to create a new prefab for it
3. After all objects have been turned into prefabs, delete

them from the scene
4. Test the objects’ behavior by dragging them from the

Prefabs folder into the scene while the game is running

- Tip: When creating new prefabs,
you have to drag them one at a
time

- Tip: Notice that their icons turn
blue when they are prefabs

By the end of this step, all objects that will be spawned during gameplay should be prefabs and
should no longer be in your scene.

Step 5: Make SpawnManager spawn Prefabs
Now that we have all of our prefabs set up, we can create a spawn manager to spawn them at
intervals and, if we want, in random locations.

1. Create an Empty “Spawn Manager” object and attach a
new SpawnManager.cs script to it

2. Create individual GameObject or GameObject array
variables for your prefabs, then assign them in the
inspector

3. Use the Instantiate(), Random.Range(), and the
InvokeRepeating() methods to spawn objects at
intervals (random objects, random locations, or both)

4. Right-click on your Assets folder > Export Package then
save a new version in your Backups folder

- Tip: Name your variables
“____Prefab” so you know it
requires a prefab value

- Don’t worry: If it’s not perfect yet
of if there are some minor bugs -
just get the general idea working

By the end of this step, objects should be spawned automatically from the appropriate location.

© Unity 2021 Create with Code - Unit 4



29

Lesson Recap
New Progress ● Non-player objects prefabs have basic movement

● Objects are destroyed when they leave the screen
● Collisions between objects are handled appropriately
● Objects are spawned at the appropriate locations on time-based intervals

New Concepts
and Skills

● Creating basic gameplay for a project independently

© Unity 2021 Create with Code - Unit 4



30

Quiz Unit 4
QUESTION CHOICES

1 You’re trying to write some code that creates a random
age between 1 and 100 and prints that age, but there is
an error. What would fix the error?

a. Change line 1 to “private float
age”

b. Add the word “int” to line 8, so
it says “int age = …”

c. On line 7, change the word
“private” to “void”

d. Add a new line after line 8 that
says “return age;”

1. private int age;

2.

3. void Start() {

4. Debug.Log(GenerateRandomAge());

5. }

6.

7. private int GenerateRandomAge() {

8. age = Random.Range(1, 101);

9. }

2 The following message was displayed in the console:
“Monica has 20 dollars”. Which of the line options in the
PrintNames function produced it?

a. Option A
b. Option B
c. Option C
d. Option D

string[] names = new string[] { "Steve", "Monica", "Eric" };

int money = 5;

void Start() {

money *= 2;

PrintNames();

}

void PrintNames () {

A. Debug.Log("Monica has " + money/2 + " dollars");

B. Debug.Log(names[1] + " has " + money*2 + " dollars");

C. Debug.Log(names[2] + " has " + money*2 + " dollars");

D. Debug.Log(names[Monica] + " has " + money/2 + " dollars");

}

© Unity 2021 Create with Code - Unit 4



31

3 The code below produces “error CS0029: Cannot
implicitly convert type 'float' to 'UnityEngine.Vector3'”.
Which of the following would remove the error?

a. On line 1, change “Vector3” to
“float”

b. On line 3, change “=” to “+”
c. Either A or B
d. None of the above1. private Vector3 startingVelocity;

2. void Start() {

3. startingVelocity = 2.0f;

4. }

4 Which of the following follows Unity’s naming
conventions (especially as it relates to capitalization)?

a. Line A
b. Line B
c. Line C
d. Line DA. float forwardInput = Input.GetAxis("Vertical");

B. float ForwardInput = input.GetAxis("Vertical");

C. Float forwardInput = Input.getAxis("Vertical");

D. float forwardInput = input.getAxis("vertical");

5 You are trying to assign the powerup variable in the
inspector, but it is not showing up in the Player
Controller component. What is the problem?

a. You cannot declare a powerup
variable in the Player Controller
Script

b. You cannot assign GameObject
type variables in the inspector

c. The powerup variable should
be public instead of private

d. The PlayerController class
should be private instead of
public

public class PlayerController : MonoBehaviour

{

private GameObject powerup;

}

6 Your game has just started and you see the error,
“UnassignedReferenceException: The variable
playerIndicator of PlayerController has not been
assigned.” What is likely the solution to the problem?

a. PlayerController variable in the
playerIndicator script needs to
be declared

b. The playerIndicator variable
needs to be made private

c. The PlayerController script
must be assigned to the player
object

d. An object needs to be dragged
onto the playerIndicator
variable in the inspector

public class PlayerController : MonoBehaviour

{

public GameObject playerIndicator;

void Update() {

playerIndicator.transform.position.y = 10;

}

}

© Unity 2021 Create with Code - Unit 4



32

7 You are trying to create a new method that takes a
number and multiplies it by two. Which method would do
that?

a. Method A
b. Method B
c. Method C
d. Method D

A. private float DoubleNumber() {

return number *= 2;

}

B. private float DoubleNumber(float number) {

return number *= 2;

}

C. private void DoubleNumber(float number) {

return number *= 2;

}

D. private void DoubleNumber() {

return number *= 2;

}

8 Which comment best describes the code below? a. // If the player collides with an
enemy, destroy the enemy

b. // If the enemy collides with a
spike, destroy the spike

c. // If the enemy collides with a
spike, destroy the enemy

d. // If the player collides with a
spike, destroy the spike

public class Enemy : MonoBehaviour

{

// Comment

private void OnTriggerEnter(Collider other) {

if(other.CompareTag("Spike")) {

Destroy(other.gameObject);

}

}

}

9 The code below produces the error, “error CS0029:
Cannot implicitly convert type 'UnityEngine.GameObject'
to 'UnityEngine.Rigidbody'”. What could be done to fix
this issue?

a. On line 1, change “collision” to
“Rigidbody”

b. On line 2, change “gameObject”
to “Rigidbody”

c. On line 3, delete “.gameObject”
d. On line 3, add

“.GetComponent<Rigidbody>()”
before the semicolon

1. void OnCollisionEnter(Collision collision) {

2. if(collision.gameObject.CompareTag("Enemy")) {

3. Rigidbody enemyRb = collision.gameObject;

4. }

5. }

© Unity 2021 Create with Code - Unit 4



33

10 Which of the following statements about
functions/methods are correct:

a. A and B are correct
b. Only B is correct
c. B and C are correct
d. Only D is correct
e. None are correct

A. Functions/methods must be passed at least one parameter
B. Functions/methods with a “void” return type cannot be

passed parameters
C. A Function/method with an “int” return type could include

the code, “return 0.5f;”
D. If there was a function/method declared as “private void

RenameObject(string newName)”, you could call that
method with “RenameObject();”

© Unity 2021 Create with Code - Unit 4



34

Quiz Answer Key
# ANSWER EXPLANATION

1 D Since the method has an “int” return type “private int GenerateRandomAge()”,
it must return an int.

2 B Debug.Log(names[1] + " has " + money*2 + " dollars"); is correct.
Arrays start with index 0, so “Monica” has the index value of “1” (names[1]).
In start, money is multiplied by 2, making it 10, so “money*2” would give you
the value of 20.

3 A Changing “Vector3” to “float” would work because you would just be
multiplying a flat by another float. Changing “=” to “+” would not work
because you can’t add a float to a Vector3.

4 A Lowercase “float”, camelCase variables, Capitalized class & method names

5 C Making a variable public will make it appear in the inspector.

6 D If the consoles says a variable is not assigned, you most likely forgot to
assign that variable by dragging on object onto it in the inspector.

7 B Since it needs to “return” a value, it should have a return type of “private float”
as opposed to “private void.” Since it needs to take a number, it needs a float
parameter (“float number”).

8 B Since this is the “Enemy” class, we are testing for the enemy colliding with
something. Since it destroys “other.gameObject”, it will destroy the spike.

9 D The code cannot convert a RigidBody type variable to a GameObject type
variable, so you have to get the RigidBody component from the gameObject

10 E A. Functions/methods do not necessarily require parameters
B. Functions/methods with a “void” return type can be passed

parameters
C. A Function/method with an “int” return type could not include the

code, “return 0.5f;”, since 0.5f is a float
D. If there was a function/method declared as “private void

RenameObject(string newName)”, you would have to pass it a string
parameter, such as RenameObject(“Steve”);

© Unity 2021 Create with Code - Unit 4



35

Bonus Features 4 - Share your Work

Steps:
Step 1: Overview

Step 2: Easy: Obstacle pyramids

Step 3: Medium: Oncoming vehicles

Step 5: Hard: Camera switcher

Step 6: Expert: Local multiplayer

Step 7: Hints and solution walkthrough

Step 8: Share your work

Length: 60 minutes

Overview: In this tutorial, you can go way above and beyond what you learned in this
Unit and share what you’ve made with your fellow creators.

There are four bonus features presented in this tutorial marked as Easy,
Medium, Hard, and Expert. You can attempt any number of these, put your
own spin on them, and then share your work!

This tutorial is entirely optional, but highly recommended for anyone wishing
to take their skills to a new level.

© Unity 2021 Create with Code - Unit 4



36

Step 1: Overview
This tutorial outlines four potential bonus features for the Sumo Battle Prototype at varying levels of
difficulty:

● Easy: Harder enemy
● Medium: Homing rockets
● Hard: Smashingly good
● Expert: Boss battle

Here’s what the prototype could look like if you complete all four features:

The Easy and Medium features can probably be completed entirely with skills from this course, but
the Hard and Expert features will require some additional research.

Since this is optional, you can attempt none of them, all of them, or any combination in between.
You can come up with your own original bonus features as well!

Then, at the end of this tutorial, there is an opportunity to share your work.

We highly recommend that you attempt these using relentless Googling and troubleshooting, but if
you do get completely stuck, there are hints and step-by-step solutions available below.

Good luck!

© Unity 2021 Create with Code - Unit 4



37

Step 2: Easy: Harder enemy
Add a new more difficult type of enemy and randomly select which is spawned.

Step 3: Medium: Homing rockets
Create a new powerup that gives the player the ability to launch projectiles at enemies to knock
them off (or something that automatically fires projectiles in all directions when the powerup is
enabled).

© Unity 2021 Create with Code - Unit 4



38

Step 5: Hard: Smash attack
Create a new powerup that allows the player to hop up into the air and smash down onto the
ground, sending any enemies nearby flying away from the player. Ideally, the closer an enemy is,
the more it should be impacted by the smash.

Step 6: Expert: Boss battle
After a certain number of waves, program a mini “boss battle,” where the boss has some
completely new abilities. For example, maybe the boss can fire projectiles at you, maybe it is
extremely agile, or maybe it occasionally generates little minions that come after you.

© Unity 2021 Create with Code - Unit 4



39

Step 7: Hints and solution walkthrough
Hints:

● Easy: Harder enemy
○ Try using an array for the enemy prefabs.

● Medium: Homing rockets
○ Try using an enum to differentiate the power ups

● Hard: Smashingly good
○ Extend the enum you created in the previous challenge

● Expert: Boss battle
○ Create a new SpawnBossWave function that only runs if the wave number is a

multiple of a particular value.

Solution walkthrough
If you are really stuck, download the step-by-step solution walkthrough.
Note that there are likely many ways to implement these features - this is only one suggestion.

Step 8: Share your work
Have you implemented any of these bonus features? Have you added any new, unique features?
Have you applied these new features to another project?

We would love to see what you've created!

Please take a screenshot of your project or do a screen-recording walking us through it, then post
it here to share what you’ve made.

We highly recommend that you comment on at least one other creator's submission. What do you
like about the project? What would be a cool new feature they might consider adding?

© Unity 2021 Create with Code - Unit 4

https://connect-prd-cdn.unity.com/20210505/9502c2c1-7535-48dd-ba2d-5ed8cab90107/Unit%204%20-%20Bonus%20Features%20Solutions.pdf?_ga=2.233637726.1186801097.1620052249-59568313.1601905412

